Hand-printed character recognition system using artificial neural networks
نویسندگان
چکیده
In this paper, a Handwritten Character Recognition system is designed using Multilayer Feedforward Articial Neural Networks. Backpropagation Learning algorithm is prefered for training of neural network. Training set occures of various Latin characters collected from different people. The characters are presented directly to the network and correctly sized in pre-processing. Recognition percentage of the system is higher than acceptable level. Input datas, network parametres and training period effect the result.
منابع مشابه
Hand printed Character Recognition using Neural Networks
In this paper an attempt is made to recognize hand-printed characters by using features extracted using the proposed sector approach. In this approach, the normalized and thinned character image is divided into sectors with each sector covering a fixed angle. The features totaling 32 include vector distances, angles, occupancy and end-points. For recognition, both neural networks and fuzzy logi...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملMulti-font Optical Character Recognition System for Printed Telugu Text
The Telugu OCR systems available in the market currently recognize only the specific fonts of Telugu. This paper describes the development of a multi-font OCR system for printed Telugu characters using Artificial Neural Networks. In this system classification of the characters is carried out using multi layer neural network Architecture.
متن کاملNeural Network Recognition and Analysis of Hand-printed Characters
The main objective of this paper is to introduce a novel method of feature extraction for character data and develop a neural network system for recognising different Latin characters. In this paper we describe feature extraction, neural network development for character recognition and perform further neural network analysis on noisy image segments to explain the qualitative and quantitative a...
متن کاملIntroduction to Artificial Intelligence OCR using Artificial Neural Networks
Optical character recognition refers to the process of translating images of handwritten, typewritten, or printed text into a format understood by machines for the purpose of editing, indexing/searching, and a reduction in storage size. The OCR process is complicated by noisy inputs, image distortion, and differences between typefaces, sizes, and fonts. Artificial neural networks are commonly u...
متن کامل